Worksheet for 2020-09-14

Problem 1. Letting a be a fixed constant, consider the function

$$
f(x, y)= \begin{cases}\frac{(x+y)^{a}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Is f continuous if $a=0$? If $a=1$? If $a=2$? If $a=3$?
f is continuous assay from $(0,0)$, so the question is just whether f is cont.
(2) $(0,0)$, ie. if $\lim _{(x, y)-(0 p)} f(x, y)=f(0,0)=0$.

If $a=0: \quad f(x, y)=\frac{1}{x^{2}+y^{2}} . \quad \lim _{(x, y) \rightarrow(0,0)} \frac{1}{x^{2}+y^{2}}=+\infty \quad$ (i.e. DNE)
so f is not continuous.
$a=1$: tron along any line and again find DNE.
$a=2: \lim _{x \rightarrow 0} \frac{(x+m x)^{2}}{x^{2}+m^{2} x^{2}}=\frac{(1+m)^{2}}{1+m^{2}}$. If $m=0$ this is 1 , $\begin{aligned} & \text { if } m=1 \text { this is } 2\end{aligned}$
so limit DNE.
$a=3$: The limit exists and is zero fowitch to polar and agreeze for instance, as done in discussion example) so f is continuous.

Problem 2. Consider $x^{2}+y^{2}+z^{2}=1$. Note that $\frac{\partial x}{\partial y}$ for example means to view the equation as implicitly defining x as a function of y and z, and then to take the partial derivative of that function with respect to y (i.e. treating z as constant).

Compute the quantities $\frac{\partial x}{\partial y}, \frac{\partial y}{\partial z}, \frac{\partial z}{\partial x}$, and then compute their product (notice that the answer is not 1 , giving you an example for why you should not think of these expressions as "fractions").

$$
2 x \frac{\partial x}{\partial y}+2 y=0
$$

$$
2 y \frac{\partial y}{\partial z}+2 z=0
$$

$$
2 x+2 z \frac{\partial z}{\partial x}=0
$$

The product is
so $\frac{\partial x}{\partial y}=-\frac{y}{x}$.
so $\frac{\partial y}{\partial z}=-\frac{z}{y}$
so $\frac{\partial z}{\partial x}-\frac{x}{z}$.

$$
\frac{\partial z}{\partial x}=-\frac{x}{z} .
$$

